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Light diffraction by field-induced non-periodic magnetic 
domain structures in FeCI2 

C Binek and !V Kleemann 
Angewandte Physik, Univedta Duisburg. W-4100 Duisburg 1. Federal Republic of Germany 

Re&ived 21 January 1993 

Abslract. The magnetic-field-inducd mixed phase of the metamagnet FeC12 gives rise to 
reduced Vansmittivity of circularly polarized light. Within the framework of the diffraction 
theory of thin random magnetic phase gratings and the assumption of fielddepndent refractive 
indices of the antifmamagnetic domains the field dependence of the transmission is perfectly 
modelled. 

1. Introduction 

Experiments which study the transmission of light are a very precise method for determining 
the mixed-phase boundaries of metamagnets [I]. As shown by Dillon et al [2] the field 
dependence of the transmitted light intensity is caused by light diffAction. They also 
explained the apparent dichroism which was introduced previously [I] by the use of different 
refraction index contrasts for left and right circularly polarized light. Dillon et al [2] gave 
only a qualitative explanation for their transmission experiments, stressing the analogy to 
periodic phase gratings as analysed for example by Kuhlow [3]. 

The aim of this paper is to describe quantitatively the transmitted intensity as a 
function of an external field in the Fraunhofer diffraction limit. In pirticular, we avoid 
the simplified assumption of a regular phase grating but introduce a general non-periodic 
spatial distribution of two different refraction indices. 

2. Experimental detaii 

A parallel beam of circularly polarized laser light at 670 nm was pulsed at a modulation 
frequency of 70 kHz and transmitted perpendicularly through a thin (0001) sheet of FeC12. 
The crystals were Bndgman grown and prepared in a dry helium atmosphere. The sample 
was mounted in a cryomagnet, allowing for axial magnetic fields B up to 5 T and 
temperatures between 3.6 and 300 K stabilized to within 2-10 mK. The cenhal spot of the 
transmitted light was selected by the use of an aperture. Light within a cone of 5 x rad 
was detected with a photomultiplier tube. The first harmonic of the light intensity signal 
was analysed using the lock-in technique. After zero-field cooling the transmitted intensity 
was recorded at a constant temperature T c TN = 23.7 K as a function of the applied 
field, 0 < E < 3 T. Following the notation in 121 we distinguish between the + and - 
polarizations of the circularly polarized light with respect to the direction of magnetization. 
The two polarization states were produced by the use of a quarter-wave plate. 
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3. Experimental results 

Figure 1 shows the field dependences of the transmitted intensities (open circles) of + 
(curve (a)) and - (curve (6)) polarized light measured for FeClz at T = 10 K. The data 
are normalized to their respective maximum [O = I ( B  < 1.1 T), Within the mixed-phase 
region B,I = 1.06 T 6 B 6 B d  = 1.75 T, the intensities drop by 35% and 60% for curves 
(a)  and (6). respectively, owing to diffraction losses [2]. Furthermore, the parabola-shaped 
loss functions A I  = I - 10 versus B are asymmetric, the steepest slopes occurring at BCl 
and Bcz for + and - poiarized light, respectively [2]. 
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Figure 1. Transmitted intensity versus applied field (0) for + polarized light (cum (Q) )  and 
- polarized light (culve (b))  mwured for Feci? 1 T = IO K and least-squares fiLs (-) by 
thc use of equation (17) (a.u.. arbitnry units). 

4. Theory and comparison with experimental results 

The aim of the following analysis is to determine an expression for the difiaction pattern of 
a two-dimensional distribution of two different refraction indices within an infinitely large 
plane-parallel thin transparent sample. Hence. we neglect diffraction due to the finite size 
of a real sample, which is hit perpendicularly by the incident coherent plane light wave. 
Furthermore we restrict the calculation to the Fraunhofer diffraction limit. According to 
Moharam eta! [4], we can estimate that we are slightly outside the Bragg regime. Because of 
the smallness of the parameter p = (h/A)z/(nonl)  < 5 with a ratio h / A  of the wavelength 
to the grating periodicity of about 0.07, the average refraction index no > 1 and the index 
grating amplitude nl 2: IO-’ we are outside the Bragg regime, which requires p > 10 [4]. 
This means that we do not have to use the theory of thick magnetic phase gratings. 

From the convolution theorem 151 we obtain the transmitted intensity I (u)  as 
m 

/ ( U )  -Lm K(r)exp(-iu . r ) d r d y  (1) 
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with U = (2n/h) (sine, sin a), h the wavelength of the incident light, r = ( x ,  y) the sample 
plane coordinate and F ,  1 the coordinates referring to the Fraunhofer plane. K(r) is the 
spatial correlation function defined as 

with the electric field strength E (r) immediately after transmission through the sample. E (r) 
depends on the special realization of the index distribution which we assume to be random. 
However, the correlation function implies a spatial average which can be substituted by the 
probability average. 

In order to find an analytic expression for K(r) we examine an arbitrary position r of the 
sample. At this position the normalized electric field strength E(r)/Eo can be either A or 
B depending on the bimodal index distribution realized, where [AI2 = [BIZ = 1. EO refers 
to the homogeneously polarized field amplitude prior to transmission, whereas A and B 
are the differently polarized fields just after passing regions with we& and strong Faraday 
rotation due to low (antiferromagnetic) and high (saturated paramagnetic) magnetization, 
respectively. The normalized correlation function then yields K(r = 0) = 1. Let be the 
probability of finding the field A and pz the probability of finding the field B .  

For the special purpose of domain diffraction of the mixed phase we assume that the 
paramagnetic volume fraction increases linearly with increasing external magnetic field B. 
Then we obtain 

P z ( B )  = ( B  - Bci ) / (Ba  - Bci) (3) (T 
and p1 = 1 - p2. Note that B,z z Bel whenever demagnetization gives rise to smearing of 
the phase transition as is the case for a platelet-shaped thin sample. 

Now we assume [rl to be much larger than the typical width z of a homogeneous 
domain in the mixed phase. Then two regions of the sample separated by lr I are completely 
independent of each other. The correlation function is then fully determined by the joint 
probabilities: 

K ( r ) = p : I A 1 2 + 2 p ~ p ~ A . B + p : I B 1 2 =  I - ~ P I P z ( ~ - c o s @ )  (4) 

with A . B = cos $ and the phase contrast @ = 2n An d/h which contains the refraction 
index contrast An and the thickness d of the sample. 

In order to describe the correlation function for all r we make the ansatz of an 
exponential decay by analogy to the results of small-angle x-ray diffraction on heterogeneous 
alloys [6]. Owing to the random distribution of the magnetic domains, K(r) is isotropic 
[7], i.e. K(r) = K(r) where r = lrl. Then we have 

K(r) = 1 - Zplpz(1 -cos @.)[I - exp(-r/z)l. ( 5 )  

Insertion of equation (5) into proportionality ( I )  yields 

m 

! ( U )  - D Lmenp(-iu . r )dxdy + C2 exp(-iu . r )&dy  
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where we introduce 
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From (6) we obtain, by using the polar coordinates (r, (D), 

[(U) - D(2H)’S(U)  + S2 Jldm dr r exp ( - z )  lk dp exp(-iur cos (D) (8) 

where U = 1111. With [SI 

dqexp(-iur cosp) = k J o ( u r )  (9) lk 
where JO is the Bessel function of order zero, we finally obtain by integration 

/(U) - 0 ( 2 X ) * S ( U )  + Q 2 H Z 2 / [ l  4- ( U Z ) 2 ] 3 / 2 .  (10) 
For direct comparison with our experimental results we require the intensity I ~ M T  that 

reaches the photomultiplier. This is the transmitted intensity within a small cone about the 
normal selected by an aperture. We choose the aperture sufficiently large that diffraction 
can be neglected but small enough to use the approximations sine N 5 and sin q N q.  Then 
Ipm is given by integration over the aperture 

h~ = 1 dEdvI(UO, v ) ) .  (11) 

Introduction of the polar coordinates (B, (D) yields 

where (Y Y a / L  with U the radius of the aperture and L the distance between the sample 
and the aperture. Solving the integrals in equation (12) yields 

Clearly, the D-term in (13) corresponds to the central component at 6 = q = 0, whereas 
the %term describes that part of the diffracted halo, which passes the diaphragm. In the 
limit (Y -P 0 the second term vanishes. It can, hence, be expected that the observed drop 
in the measured intensity within the mixed phase is primarily due to the dependence of the 
central component on the domain distribution. This is easily Seen by rewriting equation 
(13) and using the relation (7). We obtain 

Ipm = Y[I - 2 p i p 2 ( 1  - cOsJr)/JI + ( ~ Z ( Y / A ) ~ I .  (14) 

Assuming that z N 5 p m  [2, IO] and choosing h = 0.7 k m  and (Y = 1/400 we have 
( ~ H Z ( Y / ~ ) ~  N << I ;  hence, 

IPMT=Y[1--PIP2(1 -COSJr) l .  (15) 

By inspection of (3) we see that p t p z  is a quadratic function of the external field 
B. Inserting the maximum value p1pz = 4 into equation (15) and approximating 
cos* N I - $Jrz  we obtain a quadratic dependence on An of A I  versus B.  This is 
expected from general diffraction efficiency calculations [9]  and has already been used in 
[2]. This approximation is clearly not applicable in general because Jr << in is a restriction 
for the validity of the above expansion but not of equation (15). 
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4.1. Line-shape asymmetry 

Peculiarly, however, the intensity functions A I  versus B reveal polarization-dependent 
amplitudes and asymmetries as remarked previously [2 ] .  In agreement with [2] we ascertain 
that the amplitudes are determined by different index contrasts An+'- = n,''--n:'-, where 
p and a refer to the different magnetic phases and +/- to the different circular polarizations. 

In contrast with [Z], however, we do not believe that the asymmetry can be explained 
by domain shape effects. If the lineshape asymmetry were merely due to the geometrical 
properties of the domains, the behaviour should not change in quality by inversion of the 
polarization from + to -. Rather we believe that the line-shape asymmetry is also a material 
property. Hence, we introduce a field-dependent refractive index contrast which we allow 
to differ for the two circular polarization states. Since we do not know the analytical 
description of this field dependence we introduce a Taylor series up to second order in 
powers of the field: 

An+'- = Ani'- + N:/- (B - b )  + N + / -  2 ( B  -6)' (16) 

with b = 
coefficients Ani'-. NT'- and NZ'-. 

intensity function 

f p m  2: 1 - Z p l a ( l  -cos[(Znd/h)[An;'- + NT'-(B - b )  + N Z / - ( B  - b)']]) .  (17) 

The physics behind expansion (16) is the following. From Faraday rotation meas- 
urements it is known that at non-zero temperatures there is a small non-linear increase in 
the Faraday rotation with increasing field already below the metamagnetic transition. This is 
due to the growth of the antiferromagnetic refraction index contrast caused by the increase 
in ferromagnetic fluctuations with increasing field. This precursor effect is similar to that 
observed in ferroelectrics [ I l l  and is assumed to increase within the mixed phase. 

The experimental data within BC1 < B < Bc2 in figure 1 have been best fitted to equation 
(17) by using different sets of fitting parameters for each polarization as listed in table 1. 
It is seen that nearly perfect coincidence of experimental and theoretical data is achieved. 
The negative signs of the parameters $:I- = (Znd/.i)N;/- and = ( b d / h ) N : / -  
show that the refraction index contrasts decrease with increasing magnetic field for both 
polarization states. This is what we expect because of the conjectured increase in Ana with 
increasing B within the precursor regime. 

+ Bfi) the field value in the middle of the mixed phase and the expansion 

Normalizing equation (IS) to the maximum value y and inserting (16) we obtain the 

Table 1. Panuneten obtained from least-squares fits of the data in figure I to equation (17) for 
+ md - polarized light. 

Polaimtion state ~ 1 )  = (2rrd/A) An{) th = (2nd/A)Nt $2 = (2adIA)Nz 

+ I .  140 - 1.332 -1.954 
- 4.604 -1.823 -4.476 

We also measured the Faraday rotation on the same sample at T = 10 K and obtain 
the saturation value $$ of the Faraday rotation as 150". This value is related to the circular 
birefringence of the paramagnetic phase: Anp = n; - n,'. This is approximately given by 
$d = f($+ + +-) determined at where we assume that n: N n; owing to minimal 
precursor contributions. Inserting B = B,, into equation (16), one obtains @d = 174", 
which is close to the observed value within acceptable error margins. 
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5. Conclusion 

Within the scalar diffraction theory of random circular index gratings we obtain a quadratic 
field dependence of the transmitted intensity. The observed lineshape asymmetry is a non- 
negligible effect which is very probably caused by a field dependence of the refraction index 
contrast. It is therefore not appropriate to use the ratio of the intensity drop AI to determine 
the relation of the refraction index contrasts for + and - polarized light. 

Contrary to this it is in principle possible to obtain separated information about the phase 
contrasts @+I- by fitting equation (17) to the experimental data. Nevertheless determination 
of the corresponding refraction index contrasts remains difficult owing to uncertainties in the 
sample thickness and ambiguities caused by the periodicity of the cosine term in equation 
(17). 
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